1. The Issue of representation of Real-World Complex Systems

Real world is characterised by deep complexity. This obvious observation has important implications on the manner policy problems are represented and decision-making is framed. My firm conviction is that any representation of a complex system is reflecting only a sub-set of the possible representations of it. A system is then complex when the relevant aspects of a particular problem cannot be captured when using a single perspective (Funtowicz et al., 1999; O'Connor et al., 1996). To make things more difficult, human systems are reflexive complex systems. Reflexive systems have two peculiar properties: “awareness” and “purpose”, which imply an additional “jump” in describing complexity. In fact, the presence of self-consciousness and purposes (reflexivity) means that these systems can continuously add new relevant qualities/attributes that should be considered when explaining and describing their behaviour (i.e. human systems are learning systems). One important feature of reflexivity is that the human representation of a given policy problem necessarily reflects perceptions, values and interests of those structuring the problem.

Moreover, the existence of different levels and scales at which a hierarchical system can be analyzed implies the unavoidable existence of non-equivalent descriptions of it (Giampietro, 1994; Giampietro and Mayumi, 2000). As discussed by Giampietro even a simple “objective” description of a geographical orientation is impossible without taking an arbitrary subjective decision on the system scale considered relevant. In fact the same geographical place, e.g., in the USA, may be considered to be in the north, south, east or west according to the scale chosen as a reference point (the whole USA, a single state and so on). The implications for multi-criteria evaluation of the scale issue are very important. For example, in generating evaluation criteria (e.g., in evaluating the impacts of building a ski infrastructure in a mountain region, who are the relevant social actors to interact with? The inhabitants of the mountain region, the potential users in urban areas and even the ecological preservationists all around the world might sound reasonable answers) or in computing the impact scores (e.g., a contamination indicator has to be computed locally, or should it be computed at a larger scale?)

Therefore, the problem of multiple-identities in complex systems cannot only be interpreted in terms of epistemological plurality (non-equivalent observers), but also in terms of ontological characteristics of the observed system (non-equivalent observations). A consequence of these deep subjectivities is that in any normative exercise connected to a public decision problem, one has to choose an operational definition of “value” in spite of the fact that social actors with different interests, cultural identities and goals have different definitions of “value”. That is, to reach a ranking of policy options, there is a previous need for deciding about what is important for different social actors as well as what is relevant for the representation of the real-world entity described in the model. One should note that the representation of a real-world system depends on very strong assumptions about (1) the purpose of this construction, e.g., to evaluate the sustainability of a given city, (2) the scale of analysis, e.g., a block inside a city, the administrative unit constituting a Commune or the whole metropolitan area and (3) the set of dimensions, objectives and criteria used for the evaluation process. A reductionist approach for building a descriptive model can be defined as the use of just one measurable indicator (e.g. the monetary city product per person), one dimension (e.g. economic), one scale of analysis (e.g. the Commune), one objective (e.g. the maximisation of economic efficiency) and one time horizon.

An outcome of this discussion is that the political and social framework must find a place in multi-criteria decision aid. To give an example; in Spain about 30 years ago, there was an important policy criterion: safety of the north frontier with France. Nowadays nobody even remembers the existence of this Franco’s attitude towards frontiers. What I want to emphasise here, is the fact that
policy criteria are the consequence of the social and political framework existing in a given historical period. To give another example, at the moment the environmental dimension is becoming more and more important in evaluation projects while this was almost irrelevant 30 years ago.

In general, these concerns have not been considered very relevant by scientific research in the past (where the basic implicit assumption was that time was an infinite resource). On the other hand, the new nature of the policy problems faced in this third millennium (e.g., the mad cow, genetic modified organisms, …), implies that very often when using science for policy-making, long term consequences may exist and scientists and policy-makers are confronting issues where, “facts are uncertain, values in dispute, stakes high and decisions urgent” (Funtowicz and Ravetz, 1991, 1994). In this case, scientists cannot provide any useful input without interacting with the rest of society and the rest of the society cannot perform any sound decision making without interacting with the scientists. That is, the question on how to improve the quality of a policy process” must be put, quite quickly, on the agenda of “scientists”, “decision makers” and indeed the whole society.

This extension of the “peer community” is essential for maintaining the quality of the process of decision making when dealing with reflexive complex systems. In relation to this objective Funtowicz and Ravetz have developed a new epistemological framework called "Post-Normal Science" (the name "post-normal" indicates a difference from the puzzle-solving exercises of normal science, in the Kuhnian sense), where it is possible to better deal with two crucial aspects of science in the policy domain: uncertainty and value conflict. When cases in which conclusions are not completely determined by scientific facts exist; inferences will (naturally and legitimately) be conditioned by the values held by the agents. When the stakes are very high (as when an institution is seriously threatened by a policy) then a defensive tactic will involve challenging every step of a scientific argument (this applies even to those cases in which systems uncertainties are actually small). Such a tactic should be considered wrong only when is conducted covertly, as by scientists who present themselves as impartial judges when, in reality, they are actually committed advocates of one view. When legitimate contrasting views are openly used to challenge scientific arguments, we are in the realm of Post-Normal Science.

2. Social Multi-Criteria Evaluation as a Tool for Aiding Policy Processes in Reflexive Complex Systems

The previous discussion can be synthesised by using the philosophical concept of weak comparability (Martinez-Alier et al., 1998; O’Neill, 1993). Weak comparability implies incommensurability i.e. there is an irreducible value conflict when deciding what common comparative term should be used to rank alternative actions. Remembering that the presence of multiple-identities in complex systems can be explained in terms of epistemological plurality and in terms of ontological characteristics of the observed system, I argue that it is possible to further distinguish the concepts of social incommensurability and technical incommensurability (Munda, 2002a). Social incommensurability can be derived from the concepts of reflexive complexity and Post Normal Science and refers to the existence of a multiplicity of legitimate values in society. Technical incommensurability comes from the multidimensional nature of complexity and refers to the issue of representation of multiple identities in descriptive models.

If one wants to implement technical incommensurability, there is a clear need to take into account incommensurable dimensions using different scientific languages coming from different legitimate representations of the same system. This is what Neurath (1973) called the need for an “orchestration of sciences". From the experience I have in different real-world case studies, I learnt that the use of a multi-criterion framework is a very efficient tool to make Neurath’s idea operational. Here I refer to the idea of orchestration of sciences as a combination of multi/inter-disciplinarity (multi-disciplinarity: each expert takes her/his part; inter-disciplinarity: methodological choices are discussed across the disciplines). In terms of inter-disciplinarity, the issue is to find an agreement on the set of criteria to be used; in terms of multi-disciplinarity, the issue is to propose and compute an appropriate criterion score.

To deal with social incommensurability, there is a need to consider the public participation issue. For the formation of contemporary public policies, it is hard to imagine any viable alternative to extended peer communities. They are already being created, in increasing numbers, either when the authorities cannot see a way forward, or know that without a broad base of consensus, no policies can succeed. They are called "citizens' juries", "focus groups", or "consensus conferences", or any one of a great variety of names; and their forms and powers are correspondingly varied. But they all have one important element in common: they assess the quality of policy proposals, including the scientific and technical component. And their verdicts all have some degree of moral force and hence political influence. Here the quality is not merely in the verification, but also in the creation; as local people can imagine solutions and reformulate problems in ways that the accredited experts, with the best will in the world, do not find natural (De Marchi and Ravetz, 2001; Gowdy and O’Hara, 1996).

This need of public participation has been more and more recognized in a multi-criteria decision-aid (MCDA) framework too. Banville et al., (1998) offers a very well structured and convincing argumentation in this direction. I agree with them on the need of extending MCDA by incorporating the notion of stakeholder; this is the reason why a social multi-criteria process must be as participative and as transparent as possible; although I argue that participation is a necessary condition but not a sufficient one. This is the main reason I propose the concept of “Social Multi-criteria Evaluation” (SMCE) in substitution
of “Participative Multi-criteria Evaluation” (PMCE) or “Stakeholder Multi-criteria Decision Aid” (SMCDA).

One should not forget that even a participatory policy process can always be conditioned by heavy value judgements. Have all the social actors the same importance (i.e. weight)? Should a socially desirable ranking be obtained on the grounds of the majority principle? Should some veto power be conceded to the minorities? Are income distribution effects important?

A clear example of the difference between a participatory multi-criteria study and a social multi-criteria study is that of an extraordinary important that different participatory and interaction tools are used in different points in time. This allows for continuous testing of the assumptions used.

4. According to the geographical scale chosen, the relevant social actors with an interest at stake can be found thanks to institutional analysis. Institutional analysis is an essential step to identify possible “stakeholders” for a participative process. However, besides the unavoidable mistakes that may happen in carrying out an appropriate institutional analysis, I think there are even stronger reasons why I do not believe desirable a pure participatory study.

5. In synthesis, the scientific team cannot simply accept uncritically the inputs of a participatory process, since:
 a) In a focus group, powerful stakeholders may influence deeply all the others.
 b) Some stakeholders might not desire or be able to participate, but ethically the scientific team should not ignore them.
 c) The notion of stakeholder only recognises relevant organised groups; this is the reason why I prefer the term “social actors”.
 d) Focus groups are never meant to be a representative sample of population. As a consequence, they can be a useful instrument to improve the knowledge of the scientific team of the institutional and social dimensions of the problem at hand, but never a way for deriving consistent conclusions on social preferences.

These conclusions lead to the following personal (and thus arguable) convictions:

1. Transparency is an essential component to guarantee the quality of any study based on science for policy. In fact all these studies should be accountable (accountability is a concept recently proposed by the European Commission in the White Book on Governance) to the public at large for peer-reviewing.
2. Multi-criteria methods supply a powerful framework for policy analysis since this type of evaluation processes can be very effective since it accomplishes the goals of being inter/multi-disciplinary (with respect to the research team), participatory (with respect to the local community) and transparent (since all criteria are presented in their original form without any transformations in money, energy or whatever common measurement rod).

3. Since decision-makers search for legitimacy of the decisions taken (Roy and Dumart, 2002), it is extremely important that public participation or scientific studies do not become instruments of political de-responsibility. I strongly believe that the deontological principles of the scientific team and policy-makers are essential for ensuring the quality of the evaluation process. Social participation does not imply that scientists and decision-makers have no responsibility of policy actions defended and eventually taken.

4. As a consequence, ethics matters. Let’s imagine the extreme case where a development project in Amazon will affect an indigenous community with no contact with other civilizations yet. Would it be ethically more correct to invite them in a focus group… or ethically compulsory to take into account the consequences of the project for their survival?

5. A positive externality of participatory approaches is that sometimes the results obtained by the research team, i.e. data, findings, interpretations and insights, can also be returned to the community which may use them not as just given, but rather as an input for deliberative democracy.

In my opinion the substantial meaning of multi-criteria evaluation in a social context is simply tolerance and democracy. Complexity is a property of the appraisal process rather than a property inherent to the system itself. As a consequence, any model is the representation of reality resulting from a number of arbitrary assumptions, implying the existence of two or more different correct representations of the same real-world system.

With these arguments I want just to remind that, as pointed out by authors such as B. Roy (1985) and H. Simon (1976), in a multi-criteria context what really matters is the process since the problem structuring will determine the result. This discussion leads to the need of defining the concept of evaluation as the combination of representation, assessment and quality check connected to a given policy problem in relation to a given objective. This is the reason why I use the term “multi-criteria evaluation” and not “multi-criteria decision” when a social context is implied. Of course this does not mean that mathematical models are useless. On the contrary, I strongly believe that they play the fundamental role of guaranteeing consistency between the assumptions used and the results obtained, in terms of rankings of the available policy options. For this reason I think that multi-criteria algorithms to be used in a social context should be as simple as possible (i.e. with the minimum number of exogenous parameters) and that their axiomatization should be complete and clear (Munda, 2002b).

References

