Clara Rocha,
Luis C. Dias

An idea for ordinal sorting based on ELECTRE
without category limits

No. 9 2005

ISSN: 1645-2631
An idea for ordinal sorting based on ELECTRE without category limits

Clara Rocha,∗† Luis C. Dias†‡

June 24, 2005

†INESC Coimbra, R. Antero de Quental 199, 3000-033 Coimbra, Portugal.
‡Faculdade de Economia, Universidade de Coimbra, Av. Dias da Silva 165, 3004-512 Coimbra, Portugal, email: lmcdias@fe.uc.pt (corresponding author).
Abstract

This work proposes a simple and logical principle for ordinal sorting problems based on an outranking relation (namely ELECTRE’s) on the set of the alternatives to be sorted. This principle can be stated as “if an alternative outranks (is as good as) a second one, then it must belong to the same category or to a better category”. We operationalize this principle through a procedure based on asking a Decision Maker to provide sorting examples, which are then used to constrain the range of categories where other alternatives may be sorted. We show how the same idea may be used in an aggregation/disaggregation approach, considering the weights and the cutting level of ELECTRE are not fixed a priori, but are constrained only by the examples provided. In this context, we establish a “convex-shape property” stating that the range of possible categories for an alternative is always an interval of categories. Finally, we propose and illustrate with some examples a process based on the computation of the minimum cutting level associated to each sorting possibility. A discussion contrasting this approach with ELECTRE TRI is included in the conclusions.

Keywords: Multi-criteria Decision Aiding, Sorting problem, ELECTRE, Aggregation/Disaggregation approaches
1 Introduction

Multi-criteria decision aiding may be used to address ordinal sorting problems, among other types of problems. Sorting problems are concerned with evaluating a set A of alternatives in order to assign them to mutually exclusive categories $C^1, C^2, ..., C^{n_{cat}}$. The assignment of an alternative a_i to a category results from its intrinsic evaluation on multiple criteria, as well as from the definition of the categories, sometimes also provided in terms of multiple criteria. Among the methods that have been proposed to handle multiple criteria sorting problems we can cite, e.g., Trichotomic Segmentation [11], N-TOMIC [10], ORCLASS [9], ELECTRE TRI [18], PROAFTN [1], UTADIS [20], a general class of filtering methods [16], rough sets [5] or the Koksalan-Ulu method [8].

In some cases, the categories are not ordered (nominal sorting or classification). For instance, one may sort the members of a database of persons offering themselves to work in a company into the categories “technical profile”, “commercial profile”, “leadership profile”, etc., without stating one category is the best or the more important. In other cases (ordinal sorting), the categories are ordered. For instance, one may sort the same job candidates into the categories “low potential”, “average potential”, “high potential”, etc., where the candidates placed in higher categories are supposedly better than the ones placed in lower categories. When the categories are not ordered, they are usually defined through prototypical elements (e.g., [1]), and the elements of A are sorted according to their similarity with such prototypes. When the categories are ordered, they are can also be defined through prototypical elements, but typically they are defined through category limits, i.e., lower and upper bounds, where usually the upper bound of a category is the lower bound of the next better category (e.g., ELECTRE TRI [18]).

We are interested in ordinal sorting problems, with the categories ordered from worst (C^1, by convention) to best ($C^{n_{cat}}$). For these problems, there have been some proposals based on aggregation/disaggregation approaches [2, 7, 20] to overcome the difficulties often felt by the Decision Maker (DM) when asked to provide values for the method’s parameters. In some of the best-known approaches, either based on utility functions [20] or based on ELECTRE TRI [2, 13, 15], the DM is asked to provide prototypical elements (i.e., sorting examples), although there exist parameters defining the category limits. In UTADIS [20], the examples are used to infer all of the method’s parameters, including the category limits. Concerning ELECTRE, inferring all of the method’s parameters requires solving difficult non-linear problems [13]. As simplifications, [2] assumes the category limits are given, whereas [15] addresses the difficult problem of inferring these limits from sorting examples. In all of these approaches, the examples are used to infer a sorting model, which may then be used to sort any other alternatives.

A different new direction consists in proposing ordinal sorting procedures without explicitly defining category limits [4, 8]. Rather, the DM is asked to sort some alternatives from A as examples which will define the categories of the remaining alternatives. Doumpos and Zopounidis [4] consider the examples as a learning set that can be used to define a sorting model based on the net flow of PROMETHEE, solving a linear program to minimize the violations of the classification rule. Koksalan and Ulu [8] propose an interactive procedure to help the DM add successively new examples until all the alternatives are sorted. Their interactive procedure, based on the additive aggregation model for multi-attribute utility functions, ensures the examples are provided in a consistent manner, namely, imposing the natural principle that if the utility of an alternative a_i is equal or higher than the utility of another alternative a_j, then the category of a_i must be equal or better than the category of a_j.

The purpose of this paper is to make a first proposal of what could be an analogous approach based on the ELECTRE methodology, rather than utility functions. However, unlike utility functions, there is not an undisputed principle of consistency to be followed, namely when we note the outranking relation S defined by ELECTRE is not complete (alternatives that do not outrank each other are called incomparable), it is not transitive (e.g., $a_i S a_j$ and $a_j S a_k$, but not $a_i S a_k$), and it
may present cycles (e.g., \(a_j S a_k S a_i S a_j \)). These difficulties stem from the strengths of ELECTRE, namely the partial absence of compensation among criteria (a very low performance on one criterion may not be compensated by an excellent performance on another criterion) and the identification of incomparability (an alternative may not be sorted into a precise category because it is too different from any category limits or prototypes).

In this paper, we put forward the suggestion of using the usual semantic meaning of the outranking relation (\(a_i S a_j \) means \(a_i \) is at least as good as \(a_j \), i.e., \(a_i \) is not worse than \(a_j \)) to define a consistency principle: “if an alternative outranks a second one, then it must belong to the same category or to a better category”. Although seemingly logical and weak, this is a relatively strong requirement. For instance, it is not imposed by the ELECTRE TRI method. Let us note that the word consistency in this work refers to not contradicting the principle when outranking relations are used. Hence, lack of consistency may be due to misjudgments of the DM (i.e., judgements the DM is willing to change in retrospect), or may be due to the inadequacy of the principle, or may be due to the way the outranking relation is defined in ELECTRE.

Besides presenting this idea, this paper presents an interactive procedure to support the DM in the task of consistently sorting a set of alternatives. The DM is aided by learning the minimum and maximum category where an alternative might be sorted, given the examples already sorted. Sometimes, the minimum and maximum will coincide. Some other times, arising when the alternative being sorted is incomparable to all the alternatives sorted before in one of the categories (or more), it is up to the DM to make the decision. In these cases, it is the DM who can aid the procedure by choosing one among an interval of potential categories for an alternative. This decision will in turn become a precedent for future ones. The spirit behind the procedure is hence that of aiding a DM to perform a series of sorting decisions in a consistent manner, rather than deriving a model to substitute the DM.

Another contribution of this paper is to propose how the same procedure may be used even when not all of the methods parameters have been fixed, using an aggregation/disaggregation approach. More concretely, we will assume that the criteria weights and the cutting level of ELECTRE have not been defined and will compute, for each potential sorting decision, a vector of weights and an interval of values for the cutting level that make the decision compatible with the previous ones. Therefore, we may conclude that there is more than one possible category for a given alternative because either it is incomparable to those already sorted, or because of the accepted variability of the weights and the cutting level, or for both of these reasons at the same time. We will consider that the parameters that do not interrelate the criteria (i.e., the thresholds associated to each criterion individually) are fixed and may not vary.

This paper is structured as follows. The next section briefly reminds how the [0,1]-valued outranking relation used by ELECTRE TRI is defined. Section 3 presents the main idea of this paper (a formal sorting principle) and a procedure to guide a DM in consistently sorting a set of alternatives, assuming all of the method’s parameters are fixed beforehand. Section 4 presents the same procedure in the context of an aggregation/disaggregation approach where the weights and the cutting level do not need to be precisely fixed. Section 5 presents two illustrative examples. Finally, in the concluding section, we highlight the main characteristics of the proposed approach, discussing how it compares in theory with ELECTRE TRI.

2 Valued outranking relations in ELECTRE

Let \(A = \{ a_1, ..., a_m \} \) denote a set of alternatives (actions, objects, projects) represented by a vector of evaluations on \(n \) criteria. Let \(g_1(\cdot), ..., g_n(\cdot) \) denote the set of criteria functions, such that \(g_t(a_i) \) indicates the evaluation (performance) of the \(i \)-th alternative according to the \(t \)-th criterion.
A valued outranking relation is used by methods such as ELECTRE III [17] and ELECTRE TRI [18, 19] when comparing one alternative against another. Given any ordered pair \((a_i, a_j) \in A^2\), one may compute a credibility degree \(S(a_i, a_j)\) indicating the degree to which \(a_i\) outranks \(a_j\). This degree may then be compared with a cutting level \(\lambda\), to decide whether the outranking holds or not:

\[
a_i \text{ outranks } a_j \text{ (denoted } a_i S a_j) \iff S(a_i, a_j) \geq \lambda
\]

In ELECTRE, the word outranking means “is at least as good as”, or “is not worse than”. When comparing \(S(a_i, a_j), S(a_j, a_i), \) and \(\lambda\), four situations may occur:

- \(a_i S a_j \) and \(\neg(a_i S a_i) \iff a_i P a_j\) (\(a_i\) is preferable to \(a_j\))
- \(\neg(a_i S a_j) \) and \(a_j S a_i \iff a_j P a_i\) (\(a_j\) is preferable to \(a_i\))
- \(a_i S a_j \) and \(a_j S a_i \iff a_i I a_j\) (\(a_i\) is indifferent to \(a_j\))
- \(\neg(a_i S a_j)\) and \(\neg(a_j S a_i) \iff a_i R a_j\) (\(a_i\) is incomparable to \(a_j\))

The remainder of this section briefly reminds the computation of a credibility degree \(S(a_i, a_j)\) for any given ordered pair \((a_i, a_j) \in A^2\). For justifications and more details see [12, 18].

Computation of single-criterion concordance indices. The single-criterion concordance index \(c_t(a_i, a_j)\) indicates the degree to which the \(t\)-th criterion \((t = 1, \ldots, n)\) agrees with the conclusion that \(a_i\) outranks \(a_j\). This index is computed taking into account the difference of performances on the criterion considered, as well as two thresholds: indifference \(q_t\) and preference \(p_t\) \((0 \leq q_t \leq p_t)^1\):

\[
c_t(a_i, a_j) = \begin{cases}
0 & \text{if } g_t(a_j) - g_t(a_i) \geq p_t \\
\frac{p_t - g_t(a_j) + g_t(a_i)}{p_t - q_t} & \text{if } q_t < g_t(a_j) - g_t(a_i) < p_t \\
1 & \text{if } g_t(a_j) - g_t(a_i) \leq q_t
\end{cases}
\]

Computation of the global concordance index. A global concordance index \(c(a_i, a_j)\) is computed by aggregating the \(n\) single-criterion concordance indices obtained before. It represents the level of majority among the criteria in favor of the conclusion that \(a_i\) outranks \(a_j\). The computation \(c(a_i, a_j)\) takes into account a vector of criteria weights. Each of these weights \(k_t\) \((t = 1, \ldots, n)\) can be interpreted as the voting power of the respecting criterion. \(c(a, b)\) can be written as follows:

\[
c(a_i, a_j) = \frac{\sum_{t=1}^{n} k_t c_t(a_i, a_j)}{\sum_{t=1}^{n} k_t}
\]

Usually, the weights are normalized such that \(\sum_{t=1}^{n} k_t = 1\), therefore allowing to write:

\[
c(a_i, a_j) = \sum_{t=1}^{n} k_t c_t(a_i, a_j)
\]

Computation of single-criterion discordance indices. The single-criterion discordance index \(d_t(a_i, a_j)\) indicates the degree to which the \(t\)-th criterion \((t = 1, \ldots, n)\) disagrees with the conclusion

\[^1\text{We consider the thresholds } p_t \text{ and } q_t \text{ as constant, although it is possible to consider them as affine functions.}\]
that \(a_i \) outranks \(a_j \). This index is computed taking into account the difference of performances on the criterion considered, as well as two thresholds: discordance \(u_t \) and veto \(v_t \) \((p_t \leq u_t \leq v_t)^2\):

\[
d_t(a_i, a_j) = \begin{cases}
1 & \text{if } g_t(a_j) - g_t(a_i) \geq v_t \\
\frac{g_t(a_j) - g_t(a_i)}{v_t - u_t} & \text{if } u_t < g_t(a_j) - g_t(a_i) < v_t \\
0 & \text{if } g_t(a_j) - g_t(a_i) \leq p_t
\end{cases}
\]

(3)

Computation of the credibility degree. The computed global concordance index and single-criterion discordance indices are aggregated into a credibility degree \(S(a_i, a_j) \) indicating the degree to which \(a_i \) outranks \(a_j \). Originally, [17] proposed the following expression:

\[
S(a_i, a_j) = C(a_i, a_j) \cdot \prod_{t \in \{1, \ldots, n\}} \frac{1 - d_t(a_i, a_j)}{1 - c(a_i, a_j)}.
\]

Two simpler variants have been proposed afterwards. The paper that introduced the possibility of using a discordance threshold \(u_t \) different than the preference threshold \(p_t \) [12] suggests:

\[
S(a_i, a_j) = C(a_i, a_j) \cdot \prod_{t \in \{1, \ldots, n\}} [1 - d_t(a_i, a_j)].
\]

Another possibility proposed by [12] is:

\[
S(a_i, a_j) = c(a_i, a_j) [1 - d^{\max}(a_i, a_j)]
\]

with

\[
d^{\max}(a_i, a_j) = \max_{t \in \{1, \ldots, n\}} d_t(a_i, a_j).
\]

In the remainder of this paper we will consider that this latter variant has been chosen.

3 An idea for ordinal sorting without category limits

Usually sorting methods require an a priori definition of categories either by indicating profiles, i.e., \(n \)-dimensional vectors of evaluations \((g_1(b_h), \ldots, g_n(b_h))\), that are either limits separating the categories or prototypes for the categories. The idea of using profiles as limits is implemented by ELECTRE TRI, in which each category \(C^h \) \((h = 1, \ldots, n_{\text{cat}})\) is defined by a lower-bound profile \(b_{h-1} \) and an upper-bound profile \(b_h \). More precisely, according to the pessimistic variant of ELECTRE TRI, for instance, alternatives are sorted as follows:

\[
a_i \in C^h \Leftrightarrow a_iSb_{h-1} \land \neg a_iSb_h,
\]

The idea of using profiles as prototypes of the categories is used by PROAFTN [1], which does not require the categories to be ordered (hence applying to the more general category of nominal classification methods). In this method, alternatives are sorted according to their similarity with the examples.

\(^2\)Usually, this expression is written with \(u_t = p_t \). We consider the thresholds \(u_j \) and \(v_j \) as constant, although it is possible to consider them as affine functions.
The idea we propose in this paper is to use exemplary alternatives (i.e., alternatives that a DM has already placed into one of the categories judging their merits holistically) to indirectly constrain the range of possible categories for the remaining alternatives. Like ELECTRE TRI, this approach is meant for ordinal sorting problems only. However, unlike ELECTRE TRI, there are no profiles acting as category limits. On the other hand, like PROAFTN, it requires that some alternatives (or at least some fictitious profiles) are provided as examples for the categories. However, unlike PROAFTN, the approach we propose is designed for ordinal sorting problems, and it is not based on the idea of a similarity relation.

Let us define a set of categories \(C^1, ..., C^{\text{max}} \) in increasing preference order (\(C^1 \) is the worst category and \(C^{\text{max}} \) is the best one); formally, we will consider that each category is the set of alternatives that have been sorted into that category. Therefore, \(a_i \in C^h \) means that the alternative \(a_i \) has been sorted into the category \(C^h \).

As inputs, let us consider the DM has a set of alternatives \(A^* \subset A \) that have been previously sorted. For instance, the alternatives may have been sorted by the DM based on an holistic evaluation of their absolute merit, or they may be fictitious alternatives imagined to fit the DM’s notion of each category, or they may correspond to past decisions. Ideally, \(A^* \) should contain at least one example for each category. Formally, we can write the inputs as:

\[
A^* = C^1 \cup C^2 \cup ... \cup C^{\text{max}}
\]

(4)

This notation emphasizes that there is no a priori definition for the categories, which are indirectly defined using examples, and allows us to write a statement like “\(a_i \) is assigned to category \(C^h \) as an example” concisely as \(a_i \in C^h \). We propose to base the sorting of the remaining actions \(A \setminus A^* \) on one simple principle: “if an alternative \(a_i \) outranks an alternative \(a_j \), then the category of \(a_i \) must be at least as good as the category of \(a_j \):

\[
a_iSa_j \land a_i \in C^h \land a_j \in C^s \Rightarrow h \geq s.
\]

(5)

This principle can be rephrased as stating that “alternatives belonging to a given category cannot be outranked by any alternative belonging to a lower category, and cannot outrank any alternative belonging to a higher category. Although this requirement is not respected by ELECTRE TRI, it is a reasonable and logic principle given that \(a_i \) \(S \) \(a_j \) means “\(a_i \) is at least as good as (or is not worse than) \(a_j \)”.

The following corollaries result form (5):

1. \(a_iPa_j \land a_i \in C^h \land a_j \in C^s \Rightarrow h \geq s; \)
2. \(a_iIa_j \land a_i \in C^h \land a_j \in C^s \Rightarrow h = s; \)

The latter corollary stems from the fact that \(a_i I a_j \) if and only if \(a_i \) and \(a_j \) outrank each other. Similarly, if there exists a cycle in the outranking relation (\(a_i \) \(S \) \(a_j \) \(S \) \(a_k \) \(S \) ... \(S \) \(a_i \)), then (5) also implies that all the alternatives involved in the cycle should be placed in the same category. Considering the inputs (4) and principle (5), one may try to find an interval of potential categories for each alternative remaining to be sorted. For each alternative \(a_i \in A \setminus A^* \), let us denote this interval as \([C_{\text{min}}(a_i), C_{\text{max}}(a_i)]\). Hence, \(C_{\text{min}}(a_i) \) is the lowest category where \(a_i \) may be placed, and \(C_{\text{max}}(a_i) \) is the highest category where \(a_i \) may be placed, without violating (5) and given the current set of examples. Given \(a_i \), this principle allows one to bound \(C_{\text{min}}(a_i) \) and \(C_{\text{max}}(a_i) \) as follows:

- If \(a_i \) outranks any alternative from \(A^* \), say \(a_j \in C^j \) for some \(h \), then \(a_i \) should be placed into a category at least as good as \(C^h \), i.e., \(C_{\text{min}}(a_i) \geq C^h \).
• If a_i is outranked any alternative from A^*, say $a_j' \in C^{h'}$ for some h', then a_i should be placed into a category at most as good as $C^{h'}$, i.e., $C_{\text{max}}(a_i) \leq C^{h'}$.

Taking this into account we may write:

$$C_{\text{min}}(a_i) = C^h, \quad \text{with } h = \begin{cases} 1, & \text{if } \#a_j \in A^*: a_i S a_j \\ \max\{h \in \{1, ..., n_{\text{cat}}\}: a_i S a_j \land a_j \in C^h\}, & \text{otherwise}\end{cases}$$ (6)

$$C_{\text{max}}(a_i) = C^{h'}, \quad \text{with } h' = \begin{cases} n_{\text{cat}}, & \text{if } \#a_j \in A^*: a_j S a_i \\ \min\{h \in \{1, ..., n_{\text{cat}}\}: a_j S a_i \land a_j \in C^h\}, & \text{otherwise}\end{cases}$$ (7)

For some $a_i \in A \setminus A^*$ it may result that $C_{\text{min}}(a_i) = C_{\text{max}}(a_i)$. This means that one of the following cases holds, and the DM should include a_i in the only possible category for it:

• a_i is outranked by an alternative from C^1, which means that a_i should be placed in C^1 also;
• a_i outranks an alternative from $C^{n_{\text{cat}}}$, which means that a_i should be placed in $C^{n_{\text{cat}}}$ also.
• a_i outranks an alternative from a given category and is outranked by another (or the same) alternative from the same category, which means that a_i should be placed in that category.

For some $a_i \in A \setminus A^*$ it may result that $C_{\text{min}}(a_i) < C_{\text{max}}(a_i)$. In these situations, the DM may either decide to place the alternative in one of the categories in the interval $[C_{\text{min}}(a_i), C_{\text{max}}(a_i)]$, or may postpone this decision to a later stage.

Finally, for some $a_i \in A \setminus A^*$ it may result that $C_{\text{min}}(a_i) > C_{\text{max}}(a_i)$. In these situations, the way the set of example alternatives A^* has been sorted is inconsistent. The cause of the inconsistency is that a_i outranks another alternative $a_j \in C^h$ and is at the same time outranked by an alternative $a_k \in C^{h'}$, with $h > h'$ (there may or not exist a cycle $a_j S a_k S a_i S a_j$). The DM now will have two options. The first solution is to reconsider the way the alternatives involved (a_k and a_j) were sorted, possibly changing the categories where they have been assigned to, in a manner that respects the principle (5). The other solution is to consider merging the categories C^h, $C^{h'}$, and all the categories in between into a single category, especially if the number of categories is high.

To summarize, if all the parameters defining an outranking relation are set, then the following process may be followed to sort alternatives in a set A without explicitly defining the characteristics of the categories:

1. For each $h = 1, ..., n_{\text{cat}}$, select an alternative from A (or invent fictitious alternatives) to serve as examples of the category C^h. Let A^* be defined as in (4).
2. Choose an element $a_i \in A \setminus A^*$
3. Determine $C_{\text{min}}(a_i)$ and $C_{\text{max}}(a_i)$. Then,
 • if $C_{\text{min}}(a_i) = C_{\text{max}}(a_i) = C^h$, then add a_i to C^h (hence it is added to A^*);
 • if $C_{\text{min}}(a_i) < C_{\text{max}}(a_i)$, then either chose a category $C^h \in [C_{\text{min}}(a_i), C_{\text{max}}(a_i)]$ and add a_i to that category (hence it is added to A^*), or do nothing (a_i will remain in $A \setminus A^*$);
 • if $C_{\text{min}}(a_i) > C_{\text{max}}(a_i)$ (inconsistency), then either revise the sorting judgements performed until this moment, or merge the categories $[C_{\text{max}}(a_i), C_{\text{min}}(a_i)]$ into a single one.
4. Choose a different alternative $a_i \in A \setminus A^*$ and return to 3.
5. If all the alternatives have been analyzed, either stop the procedure or reanalyze the set of alternatives remaining to be sorted, returning to 2.
After completing this procedure, a subset of alternatives \(A^* \subseteq A\) will have been sorted. For the remaining alternatives, an interval of possible categories is determined. Considering the alternatives sorted in each of the categories, we may state that:

- no alternative outranks another alternative placed in a higher category;
- an alternative may or not outrank alternatives placed in lower categories;
- an alternative may or not outrank or be outranked by an alternative in the same category; it may happen that one is preferable to the other, or that they are indifferent, or that they are incomparable;
- if two alternatives are indifferent (they outrank each other), then they must belong to the same category;
- if there is a cycle in the outranking relation, then all the alternatives forming the cycle must belong to the same category.\(^3\)

4 Extension of the idea towards an aggregation/disaggregation procedure

We believe that the type of procedure presented in the previous section is particularly suited to the ideas of aggregation/disaggregation approaches [7], in which the DM provides information in the form of results that the method should yield. In such approaches, all or part of the parameter values are to be inferred, rather than directly asking the DM to provide them. The present section has the objective of presenting how the idea for ordinal sorting without profiles may fit in an aggregation/disaggregation approach.

4.1 Constraints of the parameter values

Previous research [13] shows that inferring all the parameters of ELECTRE methods is not an easy mathematical problem. Hence, there exists some work devoted to inferring only a subset of the parameters [12, 14, 15]. Here, we will consider that all the parameters that are independent from one criterion to another have already been fixed. Indeed, when eliciting the indifference, preference, discordance, or veto thresholds of one criterion, the DM may focus on that criterion only and needs not think about the remaining criteria. Contrarily to this, when eliciting the criteria weights or the cutting level, the DM must compare and interrelate the multiple criteria, all at the same time. For this reason, and also because this will lead to manageable linear programming problems, we will consider that the variables (the parameters to be inferred) are only the weights \(k_1,\ldots,k_n\) and the cutting level \(\lambda\).

To avoid situations where some criteria have a null weight or an overwhelming weight, we will constrain the weights to an interval such that no criterion can weight so little that it might almost be discarded, nor so much that it would become a “dictator”. Formally, we will require that no criterion can weigh more than half of the total number of criteria, defining the following set \(K\) of acceptable weight vectors:

\(^3\)This idea of considering as indifferent alternatives forming a cycle in the outranking relation was already present in the first ELECTRE method, ELECTRE I [18].
K = \{(k_1, ..., k_n): \ (1/n - x) \leq k_t \leq (1/n + x) \ (t = 1, ..., n) \text{ and } \sum_{t=1}^{n} k_t = 1\},

with x such that:

\[
1/n + x = \lceil n/2 \rceil \times (1/n - x)
\]

This will allow each weight to vary within an interval centered at the value corresponding to an equal weights situation \((k_1 = k_2 = ... = k_n = 1/n)\), while ensuring that no criterion weighs more than half of other criteria (rounded to the next integer, if n is odd). We must then impose that the maximum value for the weights is not greater than \(\lceil n/2 \rceil\) times the minimum value for the weights. For instance, \(n = 7\) leads to \(k_t \in [2/35; 8/35]\).

Concerning \(n = 7\) leads to \(k_t \in [2/35; 8/35]\). Concerning \(\lambda\), we will admit the interval \(\lambda \in [0, 1]\), although one would usually expect that \(\lambda \geq 0.5\).

4.2 Inference of the weights and the cutting level

The inference of the weights \(k_1, ..., k_n\) and the cutting level \(\lambda\) will be performed following the iterative and interactive process proposed in Section 3. The main difference will be that considering some parameters as variables, rather than having all the parameters fixed, will result in larger intervals of categories where each alternative may be placed.

As before, let us consider the DM is able to provide a set of alternatives \(A^\ast = C^1 \cup C^2 \cup ... \cup C^{n_{cat}}\) as examples for the different categories. Ideally, the process should start with \(C^h \neq \emptyset\) for \(h = 1, ..., n_{cat}\), although this is not mandatory. These examples implicitly define a set \(J\) of vectors \((k_1, ..., k_n, \lambda)\) compatible with those examples. By compatible, we mean that \(\forall (k_1, ..., k_n, \lambda) \in J\), the principle (5) is not violated considering \(A^\ast\). As a note, let us mention that formally the sets \(J^r\) and \(A^\ast_r\), with \(r\) being an index identifying the iteration, since these sets will change during the interactive process. However, we shall omit these indices, to keep a simpler notation.

\[
J = \{(k, \lambda): \lambda - S(a_p, a_i) \geq \varepsilon, \forall a_p, a_i \in A^\ast : a_p \in C^h, a_i \in C^s, h < s \land \sum_{t=1}^{n} k_t = 1 \land k_t \geq 0 (t = 1, ..., n) \}
\]

where \(\varepsilon\) is an arbitrarily fixed near-zero positive quantity, needed to model the strict inequality \(\lambda - S(a_p, a_i) > 0\), i.e., \(\neg(a_p S a_i)\).

We will now present a linear programming (LP) formulation to find the parameter values allowing an alternative \(a_i \in A \setminus A^\ast\) to be sorted in a given category \(C^h\), with parameter values \((k_1, ..., k_n, \lambda) \in J\). In other words we will solve an LP to test whether \(a_i\) can be sorted in a given category given the examples defining \(A^\ast\). Repeating this test for all the categories will indicate the interval of categories \([C_{min}(a_i), C_{max}(a_i)]\) where it would be reasonable to sort \(a_i\).

All the constraints implied by out principle (5) refer to “negative” outranking statements \(\neg(a_p S a_i)\), whenever \(a_p\) has been placed in a category lower than that of \(a_i\). Hence, for very high values of \(\lambda\), namely for \(\lambda = 1\), it is likely that no outranking holds (the exceptions might come from alternatives dominating other alternatives), thereby satisfying all the constraints. For this reason, the approach we suggest is based on finding the minimum value for \(\lambda\) that allows an alternative \(a_i\) to be placed in a category \(C^h\). It is then up to the DM to decide whether that minimum \(\lambda\) is still too high (meaning that placing \(a_i\) in \(C^h\) was unacceptable) or not.

The following LP can be solved to find the minimum \(\lambda\) allowing an alternative \(a_i \in A \setminus A^\ast\) to be sorted in a given category \(C^h\), with parameter values \((k_1, ..., k_n, \lambda) \in J\) and respecting (5):
Let $\lambda_{i,h}^*$ denote the optimal value of LP1. This value indicates that it is possible to sort a_i into C^h for cutting level values in the interval $[\lambda_{i,h}^*, 1]$. The cutting level, let us remind, indicates whether the credibility of the outranking relations is or not sufficient to establish an outranking conclusions. It can be interpreted as meaning the required majority of the criteria weights in favor of an outranking alternative. For instance, if there are three categories and $s^i_\lambda=0.25, 0.85, 0.90$, then the DM could easily decide to place a_i into C^1, otherwise a cutting level as high as 0.85 would be required. On the other hand, if $s^i_\lambda=0.25, 0.33, 0.40$, then these computations would be of no help to the DM, because usually the DM considers $\lambda \geq 0.5$, therefore greater than the minimum required for each of the three possibilities of assignment. As in the procedure presented in Section 3, it is also possible to reach a situation of inconsistency. This would occur if all the values of s^i_λ were considered too high, e.g., $s^i_\lambda=0.95, 0.82, 0.90$. In such cases, following the procedure in Section 3, the DM would either have to revise previous judgements or to merge categories.

In summary, the procedure proposed in Section 3 may be adapted to the case where the weights and cutting level are not fixed, based on computing the minimum cutting level that allows placing each action into each category. If the DM specifies a value λ for the cutting level, then this will define the minimum and maximum category to which each $a_i \in A \backslash A^*$ may be assigned to, given the assignments made previously:

$$C_{\text{min}}(a_i) = \min\{C^h : \lambda_{i,h}^* \leq \lambda\}, \quad \text{and} \quad C_{\text{max}}(a_i) = \max\{C^h : \lambda_{i,h}^* \leq \lambda\}.$$

For instance, consider there are 5 categories and for a given a_i one has $s^i_\lambda=0.85, 0.53, 0.40, 0.78, 0.92$. In this situation, if the DM indicates the cutting level is $\lambda = 0.6$ implies that $C_{\text{min}}(a_i) = C^2$ and $C_{\text{max}}(a_i) = C^2$. However, the DM does not have to commit to a precise value for λ. The same interval of possible categories for a_i would be reached if the DM simply stated that 0.78 was be an excessive value for the cutting level.

We will now show that s^i_λ (8) obeys to what we could call a “convex-shape property”: $\lambda_{i,h}^* \leq \max\{\lambda_{i,h-1}^*, \lambda_{i,h+1}^*\}$. Therefore, it may not be necessary to compute all the elements of s^i_λ to find $C_{\text{min}}(a_i)$ and $C_{\text{max}}(a_i)$ ($a_i \in A \backslash A^*$). For instance, one may proceed as follows:

(LP1) \[
\begin{align*}
\text{Min} & \quad \lambda_{i,h} \\
\text{s.t.} & \quad \lambda_{i,h} - S(a_i, a_m) \geq \varepsilon, \forall a_m \in C^t, \text{with } t > h \\
& \quad \lambda_{i,h} - S(a_p, a_i) \geq \varepsilon, \forall a_p \in C^s, \text{with } s < h \quad \text{// Constraints ensuring (5)} \\
& \quad k_j \leq (1/n + x), (j=1,...,n) \quad \text{// Upper bound for } k_j \\
& \quad k_j \geq (1/n - x), (j=1,...,n) \quad \text{// Lower bound } k_j \\
& \quad (k, \lambda_{i,h}) \in J
\end{align*}
\]
\[h \leftarrow 1 \]

WHILE \(h \leq n_{\text{cat}} \) and \(\lambda_{i,h}^* \) is unacceptably high DO
\[h \leftarrow h + 1 \]
END WHILE

\[C_{\text{min}}(a_i) \leftarrow h \]

IF \(h > n_{\text{cat}} \) THEN STOP \{Inconsistent situation\}
\[h' \leftarrow n_{\text{cat}} \]

WHILE \(h' \geq 1 \) and \(\lambda_{i,h'}^* \) is unacceptably high DO
\[h' \leftarrow h' - 1 \]
END WHILE

\[C_{\text{max}}(a_i) \leftarrow h' \{\text{Inconsistent if } h' < 1 \text{ or } h' < h \}. \]

For instance, consider that for a DM a cutting level is considered to be too high when it exceeds 0.7. In this case, if \(s^k_i=(0.25, [0.25], [0.34], 0.54, 0.72) \) then only the first fourth, and fifth values would have to be computed: since \(0.25 < 0.7 \) and \(0.54 < 0.7 \) all the values in between must be lower than 0.7.

The following Proposition establishes the “convex-shape property”:

Proposition 1. If \(a_i \) can be placed in \(C_x \) and \(a_i \) can be placed in \(C_z \) \((x < z - 1)\) given \(J \) then, for all \(y \in \{x + 1, x + 2, \ldots, z - 1\} \), \(a_i \) can be placed in \(C_y \).

Proof:

Since \(a_i \) can be placed in \(C_x \), it must hold:
\[\exists (k, \lambda) \in J : \not\exists a_{\alpha} \in C^w, w < z : a_{\alpha} S a_i. \tag{9} \]

On the other hand, since \(a_i \) can be placed in \(C_x \), it must hold:
\[\exists (k, \lambda) \in J : \not\exists a_{\beta} \in C^b, b > x : a_i S a_{\beta}. \tag{10} \]

We will now suppose the proposition is false and show this leads to a contradiction. If the proposition was false, then there would exist an index \(y \) greater than \(x \) and lower than \(z \) such that \(a_i \) could not be placed in \(C_y \), i.e.:
\[\forall (k, \lambda) \in J, [(\exists a_{\alpha'} \in C^{w'}, w' < y : a_{\alpha'} S a_i) \lor (\exists a_{\beta'} \in C^{b'}, b' > y : a_i S a_{\beta'})] \tag{11} \]

The previous expression states that, for every vector of parameter values in \(J \) (the set of acceptable vector of parameter values given the examples provided so far), either a) there exists an action \(a_{\alpha'} \) in a category lower than \(C_y \) that outranks \(a_i \); or b) there exists an action \(a_{\beta'} \) in a category higher than \(C_y \) that is outranked by \(a_i \). However, since \(w' < y \land y < z \Rightarrow w' < z \), then the case a) contradicts (9), whereas since \(b' > y \land y > x \Rightarrow b' > x \), then the case b) contradicts (10). Hence, (11) leads to a contradiction, therefore the proposition is true. \(\square \)

5 Illustrative examples

In this section we will illustrate the use of the procedure proposed in this paper using two sets of data. In both cases, we considered the weights and cutting level as variables, and to impose strict inequalities in LP1 we used \(\varepsilon = 0.00001 \). Since the DMs of the original studies were not present, and since the results obtained in these studies are not intended to be compared with the ones to be obtained with our procedure, we followed a simple “rule-of-thumb” to provide examples. This rule
is to choose for some alternatives the category corresponding to the minimum value in the vector s_i^λ corresponding to them. Of course, in the presence of a real DM, his/her preferences and requirements, based on holistic judgement and experience, should strongly influence the choice of the examples. Hence, these illustrative examples should not be seen as indicating a way to automatically sort the alternatives.

5.1 First example

We will use data form an application for sorting stocks listed in the Athens Stock Exchange [6], namely 20 alternatives from the commercial sector, which were evaluated on 6 criteria (Table 1). The criteria names are not relevant here, therefore we will note only that all criteria are to be maximized, except $g_3(.)$, where the lower the values, the better. Three categories are to be used: C^1 ("not attractive"), C^2 ("uncertain"), and C^3 ("attractive", the best category).

<table>
<thead>
<tr>
<th>a_{11}</th>
<th>a_{12}</th>
<th>a_{13}</th>
<th>a_{14}</th>
<th>a_{15}</th>
<th>a_{16}</th>
<th>a_{17}</th>
<th>a_{18}</th>
<th>a_{19}</th>
<th>a_{20}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.82</td>
<td>0.43</td>
<td>0.26</td>
<td>0.47</td>
<td>1.25</td>
<td>0.52</td>
<td>0.28</td>
<td>0.73</td>
<td>1.25</td>
<td>0.64</td>
</tr>
<tr>
<td>0.41</td>
<td>0.63</td>
<td>0.03</td>
<td>2.28</td>
<td>-0.20</td>
<td>2.04</td>
<td>1.23</td>
<td>0.37</td>
<td>0.64</td>
<td>8.97</td>
</tr>
<tr>
<td>0.11</td>
<td>0.21</td>
<td>0.11</td>
<td>6.08</td>
<td>-33.3</td>
<td>1.08</td>
<td>0.24</td>
<td>0.28</td>
<td>0.73</td>
<td>-1.75</td>
</tr>
<tr>
<td>0.24</td>
<td>0.02</td>
<td>0.08</td>
<td>2.41</td>
<td>-53.3</td>
<td>0.62</td>
<td>0.26</td>
<td>0.28</td>
<td>0.73</td>
<td>0.05</td>
</tr>
<tr>
<td>0.01</td>
<td>0.69</td>
<td>0.77</td>
<td>7.55</td>
<td>-40</td>
<td>3.23</td>
<td>1.02</td>
<td>1.06</td>
<td>0.82</td>
<td>5.5</td>
</tr>
<tr>
<td>0.06</td>
<td>0.50</td>
<td>0.14</td>
<td>4.28</td>
<td>8.39</td>
<td>0.72</td>
<td>1.79</td>
<td>1.12</td>
<td>0.73</td>
<td>5.86</td>
</tr>
<tr>
<td>0.95</td>
<td>0.06</td>
<td>0.14</td>
<td>4.28</td>
<td>8.39</td>
<td>0.72</td>
<td>1.79</td>
<td>1.12</td>
<td>0.73</td>
<td>5.86</td>
</tr>
<tr>
<td>0.01</td>
<td>0.69</td>
<td>0.77</td>
<td>7.55</td>
<td>-40</td>
<td>3.23</td>
<td>1.02</td>
<td>1.06</td>
<td>0.82</td>
<td>5.5</td>
</tr>
<tr>
<td>0.06</td>
<td>0.50</td>
<td>0.14</td>
<td>4.28</td>
<td>8.39</td>
<td>0.72</td>
<td>1.79</td>
<td>1.12</td>
<td>0.73</td>
<td>5.86</td>
</tr>
<tr>
<td>0.95</td>
<td>0.06</td>
<td>0.14</td>
<td>4.28</td>
<td>8.39</td>
<td>0.72</td>
<td>1.79</td>
<td>1.12</td>
<td>0.73</td>
<td>5.86</td>
</tr>
<tr>
<td>0.01</td>
<td>0.69</td>
<td>0.77</td>
<td>7.55</td>
<td>-40</td>
<td>3.23</td>
<td>1.02</td>
<td>1.06</td>
<td>0.82</td>
<td>5.5</td>
</tr>
<tr>
<td>0.06</td>
<td>0.50</td>
<td>0.14</td>
<td>4.28</td>
<td>8.39</td>
<td>0.72</td>
<td>1.79</td>
<td>1.12</td>
<td>0.73</td>
<td>5.86</td>
</tr>
<tr>
<td>0.95</td>
<td>0.06</td>
<td>0.14</td>
<td>4.28</td>
<td>8.39</td>
<td>0.72</td>
<td>1.79</td>
<td>1.12</td>
<td>0.73</td>
<td>5.86</td>
</tr>
</tbody>
</table>

Table 1: Evaluations on six criteria for 20 stocks.

We will use the original values [6] for the indifference and preference thresholds (Table 2), but we will not use the veto thresholds, i.e., we will ignore discordance. This is due, in this particular example, to the fact that the original values for the veto thresholds led to many veto situations. Since our procedure is based on varying weights and the cutting level to see if it is possible to avoid all the outrankings forbidden by (5), having many veto situations is undesirable to the extent that many of the forbidden outrankings will not hold regardless of the weights and the cutting level values.

<table>
<thead>
<tr>
<th>q_1</th>
<th>q_2</th>
<th>q_3</th>
<th>q_4</th>
<th>q_5</th>
<th>q_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.1</td>
<td>8.72</td>
<td>0.05</td>
</tr>
<tr>
<td>0.25</td>
<td>0.2</td>
<td>0.2</td>
<td>0.5</td>
<td>10</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Table 2: Indifference and preference thresholds.

The remaining parameters are considered as variables. The cutting level λ can assume values in [0, 1], whereas the weight vectors are constrained to a polytope K defined as suggested in Section 4.1. (no criterion is preponderant and no criterion is negligible):

$$K = \{(k_1, ..., k_6) : 1/12 \leq k_j \leq 3/12 (j = 1, ..., 6) \land k_1 + k_2 + ... + k_6 = 1\}.$$

Let us suppose the DM starts by stating one example for each of the three categories: $a_3 \rightarrow C^1$, $a_{14} \rightarrow C^2$, and $a_{11} \rightarrow C^3$, i.e., $A^* = C^1 \cup C^2 \cup C^3$, with $C^1 = \{a_3\}$, $C^2 = \{a_{14}\}$, and $C^3 = \{a_{11}\}$. Table 3 depicts the optimal values $\lambda_{i,h}^*$ of (LP1) for each potential way of sorting the remaining alternatives in $A \setminus A^*$.

If as usual in ELECTRE the DM states that λ will be at least 0.5, then any sorting possibility with $\lambda_{i,h}^* < 0.5$ will be feasible (the sorting is possible for any $\lambda \in [\lambda_{i,h}^*, 1]$). For instance, we may see that alternative a_0 can perfectly be sorted into C^1 or C^2. However, sorting a_0 into C^3 would require accepting $\lambda \geq 0.75$, which might be considered too high. If the DM considered that $\lambda \geq 0.60$ would
already be too high, then the alternative a_{13} could be placed only in C^2. Concerning the remaining alternatives, there are typically two categories (sometimes three) where each one could easily be placed. This lack of constraints is natural given the scarce information used up to this moment. In the absence of a DM, we will choose as a set of new examples those that had only one element in s_i^λ (recall (8)) lower than 0.5: $a_9 \rightarrow C^1$, a_5, a_{13}, and a_{16} are sorted into C^2, a_8, a_9, and a_{10} are sorted into C^3. The results are now those depicted in Table 4, where it can be seen that each value for $\lambda^*_{i,h}$ is not lower than the respective value in Table 3. This is natural, since the minimum value of the linear program (LP1) does not decrease as new constraints are added.

<table>
<thead>
<tr>
<th>a_9</th>
<th>C^1</th>
<th>C^2</th>
<th>C^3</th>
<th>a_{10}</th>
<th>C^1</th>
<th>C^2</th>
<th>C^3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.342</td>
<td>0.500</td>
<td>0.750</td>
<td>0.500</td>
<td>0.379</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.410</td>
<td>0.350</td>
<td>0.463</td>
<td>0.500</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.371</td>
<td>0.342</td>
<td>0.463</td>
<td>0.500</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.555</td>
<td>0.417</td>
<td>0.504</td>
<td>0.610</td>
<td>0.340</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.600</td>
<td>0.348</td>
<td>0.529</td>
<td>0.440</td>
<td>0.440</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.369</td>
<td>0.344</td>
<td>0.504</td>
<td>0.713</td>
<td>0.242</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.442</td>
<td>0.342</td>
<td>0.657</td>
<td>0.500</td>
<td>0.321</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.664</td>
<td>0.542</td>
<td>0.371</td>
<td>0.529</td>
<td>0.342</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.650</td>
<td>0.560</td>
<td>0.342</td>
<td>0.355</td>
<td>0.397</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3: Minimum cutting levels $\lambda^*_{i,h}$ for sorting the alternatives at iteration 1.

Again, we remind that this procedure is not to be followed in such an automatic way. Rather, the holistic evaluations of the DM should play the main role. As a matter of fact, when the most obvious choices are made (e.g., considering at this point adding $a_7 \rightarrow C^2$ and $a_{19} \rightarrow C^1$, which are two situations where $\lambda^*_{i,h}$ is clearly low compared to the other sorting possibilities for the same alternatives), they are not likely to add much information. Therefore, we will continue now considering $a_4 \rightarrow C^1$, a_2, $a_7 \rightarrow C^2$, and $a_{17} \rightarrow C^3$, where $a_2 \rightarrow C^2$ would not be an obvious choice for sorting a_2, but would be the result of a request by the DM. The corresponding results are provided in Table 5.

<table>
<thead>
<tr>
<th>a_9</th>
<th>C^1</th>
<th>C^2</th>
<th>C^3</th>
<th>a_{10}</th>
<th>C^1</th>
<th>C^2</th>
<th>C^3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.500</td>
<td>0.500</td>
<td>0.542</td>
<td>0.465</td>
<td>0.522</td>
<td>1.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.417</td>
<td>0.500</td>
<td>0.713</td>
<td>0.558</td>
<td>0.533</td>
<td>0.417</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.600</td>
<td>0.417</td>
<td>1.000</td>
<td>0.558</td>
<td>0.533</td>
<td>0.417</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.555</td>
<td>0.500</td>
<td>0.688</td>
<td>0.833</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4: Minimum cutting levels $\lambda^*_{i,h}$ for sorting the alternatives at iteration 2.

Sorting many alternatives at each iteration increases the risk of reaching an inconsistency situation. For instance, let us suppose the DM decided to sort all the remaining alternatives except a_{15} and a_{19} to the categories where the value $\lambda^*_{i,h}$ was minimum. This would lead to the results in
Table 6, where the DM must accept a cutting level of at least 0.7 to sort a_{15}. If we suppose this was considered too high by the DM, then some examples would have to be withdrawn. To inform this, one may check which constraints of (LP1) are binding at the optimal solutions concerning a_{15}, which would show that the example concerning a_{18} is responsible for the high values in λ^*_1, λ^*_2, λ^*_3, λ^*_4, and λ^*_5. Withdrawing only the example a_{18} (removing the alternative from C^3) leads to Table 7. Finally, placing $a_{18} \rightarrow C^3$ would result in $s_{15}^* = (0.75, 0.577, 0.542)$ and $s_{19}^* = (0.693, 0.833)$. Considering λ should be lower than 0.7, the DM could decide $a_{15} \rightarrow C^2$, which would not change s_{19}^*. Finally, $a_{19} \rightarrow C^1$ would be the natural ending for this process.

Table 6: Minimum cutting levels $\lambda^*_{i,h}$ for sorting the alternatives at iteration 4.

<table>
<thead>
<tr>
<th>a_0</th>
<th>a_1</th>
<th>a_2</th>
<th>a_3</th>
<th>a_4</th>
<th>a_5</th>
<th>a_6</th>
<th>a_7</th>
<th>a_8</th>
<th>a_9</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Table 7: Minimum cutting levels $\lambda^*_{i,h}$ for sorting the alternatives after removing example $a_{18} \rightarrow C^3$.

<table>
<thead>
<tr>
<th>a_0</th>
<th>a_1</th>
<th>a_2</th>
<th>a_3</th>
<th>a_4</th>
<th>a_5</th>
<th>a_6</th>
<th>a_7</th>
<th>a_8</th>
<th>a_9</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

5.2 Second example

We will now present a second example with more alternatives to sort and more categories. We will use data from [3], referring to the evaluation of 40 companies to be sorted into 5 categories (in the original application there were only 3 categories) representing their risk, based on their performances on 7 criteria. Criteria g_1, g_2, g_6, and g_7 are to be maximized, whereas g_3, g_4, and g_5 are to be minimized. Table 8 depicts the performances of the alternatives on these criteria.

We will consider as fixed the indifference, preference, discordance, and veto thresholds associated with each criterion, indicated in Table 9. We now enable discordance to occur, although we have chosen values for u_j and v_j that do not allow veto situations to occur frequently when comparing the alternatives.

The remaining parameters are again considered as variables. The cutting level λ can assume values in $[0, 1]$, whereas the weight vectors are constrained to a polytope K defined as suggested in Section 4.1:

$$K = \{(k_1, \ldots, k_7) : 2/352 \leq k_j \leq 8/35 (j = 1, \ldots, 7) \land k_1 + k_2 + \ldots + k_7 = 1\}.$$
Despite the scarce information used, there are some possible assignments that are very natural into $A\setminus A^*$. Let us suppose the DM starts by stating one example for each of the five categories: $a_{28} \rightarrow C^1$, $a_{21} \rightarrow C^2$, $a_{23} \rightarrow C^3$, $a_{17} \rightarrow C^4$, and $a_{29} \rightarrow C^5$. Table 10 depicts the optimal values $\lambda_{i,h}^*$ of (LP1) for each potential way of sorting the remaining alternatives in $A\setminus A^*$.

Table 8: Performances of the alternatives to be sorted (second example)

<table>
<thead>
<tr>
<th></th>
<th>y_1</th>
<th>y_2</th>
<th>y_3</th>
<th>y_4</th>
<th>y_5</th>
<th>y_6</th>
<th>y_7</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_0</td>
<td>35.8</td>
<td>67.9</td>
<td>19.4</td>
<td>0.0</td>
<td>0.0</td>
<td>5.0</td>
<td>4.0</td>
</tr>
<tr>
<td>a_1</td>
<td>16.4</td>
<td>14.5</td>
<td>59.8</td>
<td>7.5</td>
<td>5.2</td>
<td>5.0</td>
<td>3.0</td>
</tr>
<tr>
<td>a_2</td>
<td>35.8</td>
<td>24.0</td>
<td>64.9</td>
<td>2.1</td>
<td>4.5</td>
<td>5.0</td>
<td>4.0</td>
</tr>
<tr>
<td>a_3</td>
<td>20.6</td>
<td>61.7</td>
<td>75.5</td>
<td>28.0</td>
<td>8.0</td>
<td>5.0</td>
<td>3.0</td>
</tr>
<tr>
<td>a_4</td>
<td>11.5</td>
<td>17.1</td>
<td>57.1</td>
<td>4.2</td>
<td>3.7</td>
<td>5.0</td>
<td>2.0</td>
</tr>
<tr>
<td>a_5</td>
<td>22.4</td>
<td>25.1</td>
<td>49.8</td>
<td>5.0</td>
<td>7.9</td>
<td>5.0</td>
<td>3.0</td>
</tr>
<tr>
<td>a_6</td>
<td>23.9</td>
<td>34.5</td>
<td>48.9</td>
<td>2.5</td>
<td>8.0</td>
<td>5.0</td>
<td>3.0</td>
</tr>
<tr>
<td>a_7</td>
<td>29.9</td>
<td>44.0</td>
<td>57.8</td>
<td>1.7</td>
<td>2.5</td>
<td>5.0</td>
<td>4.0</td>
</tr>
<tr>
<td>a_8</td>
<td>8.7</td>
<td>5.4</td>
<td>27.4</td>
<td>4.5</td>
<td>4.5</td>
<td>5.0</td>
<td>2.0</td>
</tr>
<tr>
<td>a_9</td>
<td>25.7</td>
<td>29.7</td>
<td>46.8</td>
<td>4.6</td>
<td>3.7</td>
<td>4.0</td>
<td>2.0</td>
</tr>
<tr>
<td>a_{10}</td>
<td>21.2</td>
<td>24.6</td>
<td>64.8</td>
<td>3.6</td>
<td>8.0</td>
<td>4.0</td>
<td>2.0</td>
</tr>
<tr>
<td>a_{11}</td>
<td>18.3</td>
<td>31.1</td>
<td>69.3</td>
<td>2.8</td>
<td>5.0</td>
<td>4.0</td>
<td>2.0</td>
</tr>
<tr>
<td>a_{12}</td>
<td>20.7</td>
<td>19.3</td>
<td>19.7</td>
<td>2.2</td>
<td>4.0</td>
<td>4.0</td>
<td>2.0</td>
</tr>
<tr>
<td>a_{13}</td>
<td>9.9</td>
<td>3.5</td>
<td>53.1</td>
<td>8.5</td>
<td>5.3</td>
<td>4.0</td>
<td>2.0</td>
</tr>
<tr>
<td>a_{14}</td>
<td>10.4</td>
<td>9.3</td>
<td>80.9</td>
<td>1.4</td>
<td>4.1</td>
<td>4.0</td>
<td>2.0</td>
</tr>
<tr>
<td>a_{15}</td>
<td>17.7</td>
<td>19.8</td>
<td>52.8</td>
<td>7.9</td>
<td>6.1</td>
<td>4.0</td>
<td>2.0</td>
</tr>
<tr>
<td>a_{16}</td>
<td>14.8</td>
<td>15.9</td>
<td>27.9</td>
<td>5.4</td>
<td>1.8</td>
<td>4.0</td>
<td>2.0</td>
</tr>
<tr>
<td>a_{17}</td>
<td>16.0</td>
<td>14.7</td>
<td>53.5</td>
<td>6.8</td>
<td>3.8</td>
<td>4.0</td>
<td>2.0</td>
</tr>
<tr>
<td>a_{18}</td>
<td>11.7</td>
<td>10.0</td>
<td>42.1</td>
<td>12.2</td>
<td>4.3</td>
<td>5.0</td>
<td>2.0</td>
</tr>
<tr>
<td>a_{19}</td>
<td>11.0</td>
<td>4.2</td>
<td>60.8</td>
<td>6.2</td>
<td>4.8</td>
<td>4.0</td>
<td>2.0</td>
</tr>
</tbody>
</table>

Table 9: Thresholds associated with the criteria

Table 10: Minimum cutting levels $\lambda_{i,h}^*$ at iteration 1 (2nd example)

Despite the scarce information used, there are some possible assignments that are very natural to accept, such as sorting a_0 into C^5. If we hypothesize that the DM wants to consider a cutting level lower than 0.7, then the following examples could be also added: $a_{35}, a_{36}, a_{38} \rightarrow C^1$, $a_{26} \rightarrow C^2$, $a_{10} \rightarrow C^4$, $a_0, a_2, a_7 \rightarrow C^5$. Adding these examples would lead to the results in Table 11. Tables 12 to 16 present a possible sequence based on a systematical choice of the lower $\lambda_{i,h}^*$ values.

After the last iteration, only two alternatives remain to be sorted: a_{22} and a_{25}. There remains some freedom concerning how to sort them. For instance, sorting a_{22} into C^1, C^2, C^3, or C^4 (C^5 would require a higher cutting level) does not change the values of s^λ_{25}, meaning it allows sorting a_{25} into one of the three categories in the interval $[C^2, C^3]$. Likewise, sorting a_{25} into one of the three categories in the interval $[C^2, C^4]$ does not constrain the sorting possibilities for a_{22}. Therefore, the
Each sorting procedure would not be of further help to the DM concerning how to sort these two alternatives.

Conclusion

This work proposes a simple and logical principle for ordinal sorting problems based on an outranking relation (namely ELECTRE’s) on the set of the alternatives to be sorted. This principle (5) can be stated as “if an alternative outranks (is as good as) a second one, then it must be placed on the same category or in a better category”.

We have shown that if the outranking relation is completely defined (all the parameter values are fixed), then it is possible to constrain the range of categories where an alternative may be sorted given sorting examples previously stated. We have also shown how the same idea may be used in an aggregation/disaggregation approach, considering the weights and the cutting level are not fixed a priori, but constrained by the examples provided. In this context, we established a “convex-shape property” that shows that there are no “holes” in the range of possible categories for an alternative: if it can be placed in C^x and C^y, then it can be placed in any category in $[C^x, C^y]$.

Finally, we have proposed and we have illustrated with some examples how a process based on the computation of the minimum cutting level $\lambda_{i,h}^*$ needed to allow an alternative a_i to be sorted into a category C^h.

The spirit of the approach proposed in this paper is that of aiding a DM to perform sorting decisions in a consistent manner, rather than deriving a model to substitute the DM. Each sorting decision will constrain the subsequent ones if consistency with principle (5) is to be maintained. Therefore, the DM is aided when the procedure shows what is the minimum and maximum category

<table>
<thead>
<tr>
<th>$\lambda_{i,h}^*$</th>
<th>C^1</th>
<th>C^2</th>
<th>C^3</th>
<th>C^4</th>
<th>C^5</th>
<th>C^6</th>
<th>C^7</th>
<th>C^8</th>
<th>C^9</th>
<th>C^{10}</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_1</td>
<td>1.00</td>
<td>1.00</td>
<td>0.52</td>
<td>0.45</td>
<td>0.77</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>a_2</td>
<td>0.73</td>
<td>0.73</td>
<td>0.51</td>
<td>0.45</td>
<td>0.45</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>a_3</td>
<td>0.84</td>
<td>0.68</td>
<td>0.49</td>
<td>0.43</td>
<td>0.54</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>a_4</td>
<td>0.84</td>
<td>0.73</td>
<td>0.76</td>
<td>0.51</td>
<td>0.43</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>a_5</td>
<td>0.97</td>
<td>0.97</td>
<td>0.63</td>
<td>0.45</td>
<td>0.45</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>a_6</td>
<td>0.96</td>
<td>0.96</td>
<td>0.63</td>
<td>0.45</td>
<td>0.45</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Table 12: Minimum cutting levels $\lambda_{i,h}^*$ at iteration 3 (2nd example).
where an alternative might be sorted. Sometimes, the minimum and maximum will coincide. Some other times, it is up to the DM to make the decision. In this sense, the procedure both aids the DM and is aided by the DM. When the DM aids the procedure by choosing one among a range of potential categories for an alternative, then it will also be helped by this information in the future as the newly sorted alternative may contribute to narrow the interval of possible categories for future alternatives.

Comparing this approach to ELECTRE TRI and its aggregation/disaggregation extensions [2], the most salient feature of the approach proposed in this paper is that the explicit definition of category limits (profiles) is avoided. However, contrarily to other approaches that define categories

<table>
<thead>
<tr>
<th></th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
<th>C5</th>
<th>C6</th>
<th>C7</th>
<th>C8</th>
<th>C9</th>
</tr>
</thead>
<tbody>
<tr>
<td>09</td>
<td>0.59</td>
<td>1.00</td>
<td>0.58</td>
<td>0.54</td>
<td>0.54</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>02</td>
<td>0.98</td>
<td>0.58</td>
<td>0.54</td>
<td>0.54</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>04</td>
<td>0.84</td>
<td>1.00</td>
<td>0.77</td>
<td>0.58</td>
<td>0.54</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>06</td>
<td>0.97</td>
<td>1.00</td>
<td>0.77</td>
<td>0.58</td>
<td>0.54</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>08</td>
<td>0.77</td>
<td>0.59</td>
<td>0.54</td>
<td>0.77</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>10</td>
<td>0.77</td>
<td>0.58</td>
<td>0.58</td>
<td>0.58</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>11</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>12</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>13</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>14</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>15</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>16</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>17</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>18</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>19</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Table 13: Minimum cutting levels λ^*_i at iteration 4 (2nd example).
on the basis of exemplary alternatives (e.g., [1]), we use the outranking relation in an asymmetrical way, rather than being interested in an indifference relation.

Avoiding the definition of category limits may be considered as an advantage of this procedure, as inferring the category limits is not an easy task without imposing a few simplifications [15]. In any case, we are indirectly defining multiple limits. In ELECTRE TRI (pessimistic variant), an alternative is sorted into a category if it outranks its lower limit and does not outrank its upper limit, with lower and upper limits defined a priori. In this paper, an alternative is sorted into a category if it is not outranked by a lower limit and does not outrank an upper limit, with lower and upper limits being any alternative already sorted by the DM in worse or better categories, respectively.

Both the procedure proposed here and ELECTRE TRI have the common characteristic of not sorting an alternative into a precise category if that alternative shows to be atypical. In ELECTRE TRI this is reflected in different results between the pessimistic and optimistic variants, which appear when the alternative to be sorted is incomparable to one or more limits. In this paper, the procedure in Section 3 may also result in $C_{min}(a_i) \neq C_{max}(a_i)$, if the alternative is incomparable to all the examples placed in a given category. However, if the DM then decides to consider that alternative as an example for one of the categories in $[C_{min}(a_i), C_{max}(a_i)]$, then subsequent similar alternatives will be used to justify a more precise classification. As the number of sorted alternatives increases, the chance of finding an atypical alternative decreases. The downside is that as the number of examples increases, so does the chance of being inconsistent.

Since the examples can be fictitious vectors of performances invented by the DM (as usually are the limits in ELECTRE TRI), our paper can be interpreted as proposing an extension of ELECTRE TRI to allow multiple limits (probably incomparable ones) separating the categories. The main difference would then be the fact that the condition of outranking the lower limit is replaced by the condition of not being outranked by a lower limit. This use of this approach would place each alternative in the lowest category allowed by the principle (5) (pessimistic variant), or in the highest category possible (optimistic variant). If the principle (5) is to be strictly followed, as sustained in this paper, then it must apply to all the alternatives that are sorted by the DM. However, the DM can select not to consider all alternatives as examples, i.e., not to sort all alternatives to precise categories. This means that the set A^* would strictly follow the principle (5), serving as prototypes to constrain the sorting of the remaining alternatives $a_i \in A \setminus A^*$ to an interval $[C_{min}(a_i), C_{max}(a_i)]$ ($C_{min}(a_i)$ being the result of a pessimistic procedure, and $C_{max}(a_i)$ being the result of an optimistic procedure).

Comparing the aggregation/disaggregation approach proposed here with the one proposed for ELECTRE TRI, another difference stems from the fact that we now have only negative outranking (i.e., non-outranking) constraints of the type $\lambda - S(a_p, a_i) \geq \varepsilon$, while for ELECTRE TRI we have

| a_1 | a_2 | a_3 | a_4 | a_5 | a_6 | a_7 | a_8 | a_9 | a_{10} | a_{11} | a_{12} | a_{13} | a_{14} | a_{15} | a_{16} | a_{17} | a_{18} | a_{19} |
| ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |

Table 16: Minimum cutting levels $\lambda_{i,h}^*$ at iteration 7 (2nd example).
positive \(\lambda - S(a_p, a_i) \leq 0 \) as well as negative outranking constraints. Therefore, in this paper we do not infer a value for the cutting level \(\lambda \) (we know that \(\lambda = 1 \) would trivially solve almost all of the constraints), but we infer a minimum value for this parameter. This forces the DM to deal explicitly with the meaning of the cutting level when deciding in which categories may each alternative be sorted into, which may be seen as the price to pay in this approach to avoid the definition of category limits.

Finding appropriate ways of incorporating positive outranking constraints in this approach is an interesting issue to research in the future. Future research is also needed to evaluate the implications of the number and choice of examples in the results of the procedure. This involves not only to continue experimenting with examples such as the ones presented here, but also possibly performing simulation studies.

Acknowledgements: This work has been motivated by conversations held with José Figueira and Vincent Mousseau. It has been supported by FCT/FEDER grant POCI 2010/EGE/58371/2004.
References

