Recovery Schemes in MPLS Networks

Luísa Jorge a,c \quad Teresa Gomes a,c

a Escola Superior de Tecnologia e de Gestão do Instituto Politécnico de Bragança, Campus de Sta Apolónia, 5301-857 Bragança, Portugal
email: ljorge@inescc.pt

b Departamento de Engenharia Electrotécnica e de Computadores da FCTUC, Pólo 2 da Univ. Coimbra, 3030-290 Coimbra, Portugal
email: teresa@deec.uc.pt

c INESC-Coimbra, Rua Antero de Quental 199, 3000-033 Coimbra, Portugal
ljorge@inescc.pt; teresa@deec.uc.pt

Abstract

A MultiProtocol Label Switching (MPLS) network includes many kinds of resources, each with different reliability. To provide reliable services MPLS makes use of a set of procedures (detection, notification and fault recovery) which seek to ensure appropriate protection for the traffic carried in the Label Switched Paths (LSPs). When a fault happens in the primary LSP, the recovery scheme must re-direct the traffic to a recovery path (the protection LSP or recovery LSP) which bypasses the fault.

The two basic recovery models used to redirect traffic are \textit{re-routing} (the recovery path is signaled only upon fault detection in the active path) and \textit{protection switching} (the protection path is established before any failure detection).

In this work we present a survey of several fault recovery schemes found in literature, pointing out the underlying operational research problems. The reviewed recovery mechanisms are then classified according to a set of characteristics considered relevant.